Transit Vehicle OBE --> Connected Vehicle Roadside Equipment:
local signal priority request
Definitions
local signal priority request (Information Flow): Request from a vehicle to a signalized intersection for priority at that intersection. This flow also allows the vehicle to cancel a priority request (for example, when the vehicle clears the intersection).
Transit Vehicle OBE (Source Physical Object): The 'Transit Vehicle On-Board Equipment' (OBE) resides in a transit vehicle and provides the sensory, processing, storage, and communications functions necessary to support safe and efficient movement of passengers. The types of transit vehicles containing this physical object include buses, paratransit vehicles, light rail vehicles, other vehicles designed to carry passengers, and supervisory vehicles. It collects ridership levels and supports electronic fare collection. It supports a traffic signal prioritization function that communicates with the roadside physical object to improve on-schedule performance. Automated vehicle location enhances the information available to the transit operator enabling more efficient operations. On-board sensors support transit vehicle maintenance. The physical object supports on-board security and safety monitoring. This monitoring includes transit user or vehicle operator activated alarms (silent or audible), as well as surveillance and sensor equipment. The surveillance equipment includes video (e.g. CCTV cameras), audio systems and/or event recorder systems. It also furnishes travelers with real-time travel information, continuously updated schedules, transfer options, routes, and fares. A separate 'Vehicle OBE' physical object supports the general vehicle safety and driver information capabilities that apply to all vehicles, including transit vehicles. The Transit Vehicle OBE supplements these general capabilities with capabilities that are specific to transit vehicles.
Connected Vehicle Roadside Equipment (Destination Physical Object): 'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices (i.e., Roadside Units (RSUs)) equipped with short range wireless (SRW) communications technology, as well as any other supporting equipment that leverage the RSU and are not described by other objects (e.g., a local roadside processor). CVRSE are used to send messages to, and receive messages from, nearby vehicles and personal devices equipped with compatible communications technology. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.
Included In
This Triple is in the following Service Packages:
This triple is associated with the following Functional Objects:
This Triple is described by the following Functional View Data Flows:
This Triple has the following triple relationships:
Relationship | Source | Destination | Flow |
---|---|---|---|
Interactive | Connected Vehicle Roadside Equipment | Transit Vehicle OBE | signal priority status |
Communication Solutions
- EU: Signal Control Messages - G5 TCP (9)
- US: SAE Signal Preemption - LTE-V2X TCP (23)
- US: SAE Signal Preemption - WAVE TCP (36)
Selected Solution
Solution Description
ITS Application Entity
SAE J2735 ISO 19091 SAE J2945/B CTI 4501 |
Click gap icons for more info.
|
||
Mgmt
Addressed Elsewhere |
Facilities
SAE J2735 SAE J2945 |
Security
|
|
TransNet
|
|||
Access
|
Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.
Characteristics
Characteristic | Value |
---|---|
Time Context | Recent |
Spatial Context | Adjacent |
Acknowledgement | False |
Cardinality | Unicast |
Initiator | Source |
Authenticable | True |
Encrypt | False |
Interoperability | Description |
---|---|
National | This triple should be implemented consistently within the geopolitical region through which movement is essentially free (e.g., the United States, the European Union). |
Security
Information Flow Security | ||||
---|---|---|---|---|
Confidentiality | Integrity | Availability | ||
Rating | Not Applicable | Moderate | Low | |
Basis | This information can be observed. | Only approved vehicles should be allowed to make these requests to the RSE. A corrupted request may lead to a transit vehicle not receiving a green light after requesting it. In this case, this may lead to traffic delays. If an unapproved vehicle is able to forge these requests, they may cause larger scale traffic delays. | If the RSE does not receive any requests, the vehicle may not receive the priority it requested. In the worst case scenario the transit vehicle would be forced to wait at some lights until they turned green. It would be more useful for a device to support this application, and only have some messages received, than to not support this application at all. |
Security Characteristics | Value |
---|---|
Authenticable | True |
Encrypt | False |